首页> 外文OA文献 >Network Infusion to Infer Information Sources in Networks
【2h】

Network Infusion to Infer Information Sources in Networks

机译:网络注入推断网络中的信息源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several significant models have been developed that enable the study ofdiffusion of signals across biological, social and engineered networks. Withinthese established frameworks, the inverse problem of identifying the source ofthe propagated signal is challenging, owing to the numerous alternativepossibilities for signal progression through the network. In real worldnetworks, the challenge of determining sources is compounded as the truepropagation dynamics are typically unknown, and when they have been directlymeasured, they rarely conform to the assumptions of any of the well-studiedmodels. In this paper we introduce a method called Network Infusion (NI) thathas been designed to circumvent these issues, making source inference practicalfor large, complex real world networks. The key idea is that to infer thesource node in the network, full characterization of diffusion dynamics, inmany cases, may not be necessary. This objective is achieved by creating adiffusion kernel that well-approximates standard diffusion models, but lendsitself to inversion, by design, via likelihood maximization or errorminimization. We apply NI for both single-source and multi-source diffusion,for both single-snapshot and multi-snapshot observations, and for bothhomogeneous and heterogeneous diffusion setups. We prove the mean-fieldoptimality of NI for different scenarios, and demonstrate its effectivenessover several synthetic networks. Moreover, we apply NI to a real-dataapplication, identifying news sources in the Digg social network, anddemonstrate the effectiveness of NI compared to existing methods. Finally, wepropose an integrative source inference framework that combines NI with adistance centrality-based method, which leads to a robust performance in caseswhere the underlying dynamics are unknown.
机译:已经开发了几种重要的模型,能够研究信号在生物,社会和工程网络中的扩散。在这些已建立的框架内,由于存在众多通过网络进行信号传播的可能性,因此确定传播信号源的反问题是具有挑战性的。在现实世界的网络中,确定来源的挑战更加复杂,因为通常不知道真正的传播动力学,并且当直接测量动力学时,它们很少符合任何经过充分研究的模型的假设。在本文中,我们介绍了一种称为网络注入(NI)的方法,该方法旨在解决这些问题,从而使源推理对大型,复杂的现实世界网络切实可行。关键思想是推断网络中的源节点,在许多情况下可能不需要完全描述扩散动力学。通过创建可以很好地逼近标准扩散模型的扩散内核来实现此目标,但是通过设计,可以通过似然最大化或误差最小化来实现反演。我们将NI用于单源和多源扩散,单快照和多快照观察,以及均质和异质扩散设置。我们证明了NI在不同情况下的均值场最优性,并证明了其在多个综合网络上的有效性。此外,我们将NI应用于实际数据应用程序,识别Digg社交网络中的新闻来源,并展示了NI与现有方法相比的有效性。最后,我们提出了一个集成的源推理框架,该框架将NI与基于距离中心性的方法相结合,在基本动态未知的情况下,可提供强大的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号